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INTRODUCTION

This paper is devoted to the automatic recog-
nition and localization of activated sludge organ-
isms from the municipal wastewater treatment 
plant. The paper presents the method of using au-
tomatic image analysis to identify the shell amoe-
ba Arcella vulgaris among other organisms living 
in activated sludge. The analyzed species belong 
to, testate amoebae, and are a group mentioned in 
the context of assessing the stability of the opera-
tion of wastewater treatment plants with biological 
reactors, especially nitrification and denitrification 
processes [Fiałkowska et al., 2005; Pérez-Uz et 

al., 2010; Babko et al., 2023]. They are easy to 
observe and count under a microscope due to their 
characteristic appearance, large number and sed-
entary lifestyle. Thus, they are a good object for 
the detection task [Fiałkowska et al., 2005].

Automatic image analysis, also known as 
computer vision, belongs to the field of machine 
learning and artificial intelligence. It relies on ex-
tracting and processing data from digital images 
to be later interpreted. The main task of computer 
vision is recognizing and locating objects in the 
image and assigning them to relevant classes.

Computers “see” the world in a slightly dif-
ferent way than people. They interpret each image 
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ABSTRACT
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as two-dimensional arrays of numerical values, 
called pixels. This fact does not mean that there 
is no possibility of teaching them to recognize 
shapes and patterns. All what must be done is to 
figure out how a computer vision system can use 
numerical values to detect objects in an image 
and their characteristics, such as edges, colors, 
textures, sizes, and spatial arrangement [Girshick 
et al., 2014; Girshick, 2015; He et al., 2015].

The development of computer vision began 
in the mid-1990s. One of the first events in the 
field of artificial intelligence is considered to be 
the launch of the Summer Vision Project by Sey-
mour Papert in 1966. The project aimed to create 
a special computer system that could be able to 
identify objects in the image. The implementation 
of this project consisted in manually specifying 
rules for detecting objects by programmers. The 
rules in early computer vision systems were typi-
cally based on specific patterns or features that 
programmer manually defined. These rules could 
include mathematical algorithms or logical con-
ditions that helped the computer identify objects 
or characteristics in an image. For example, the 
rules could be created to detect edges by looking 
for rapid changes in pixel intensity values or to 
identify colors by comparing pixel values of pre-
defined color thresholds. These rules were often 
derived from the knowledge and expertise of pro-
grammers and required a significant manual effort 
to be developed and fine-tuned. However, due to 
complexity and variability of real-world images, 
relying solely on manually specified rules proved 
to be limited in its efficiency [Papert, 2004].

In the 1970s and 1980s, researchers focused 
on developing algorithms to detect specific fea-
tures like edges, corners, and textures in images. 
Techniques such as the Canny edge detector and 
the Harris corner detector were introduced. Scale-
space theory, introduced by Witkin in the 1980s, 
aimed to analyze images at multiple scales to han-
dle variations in object size and appearance. This 
theory led to the development of techniques like 
the Laplacian of Gaussian (LoG) and Difference 
of Gaussians (DoG) for blob detection. In the 
1980s and 1990s, neural networks and machine 
learning gained popularity in computer vision.

Between 2000 and 2010, computer vision 
experienced several advancements and break-
throughs. Significant progress was made in ob-
ject detection and recognition. The introduction 
of the Viola-Jones algorithm in 2001 enabled re-
al-time face detection. Additionally, progress in 

the Histogram of Oriented Gradients (HOG) fea-
ture descriptor led to improved object detection 
in images. Various feature descriptors, including 
SIFT (Scale-Invariant Feature Transform) and 
SURF (Speeded-Up Robust Features) were in-
troduced. These descriptors allowed for robust 
matching and recognition of objects across dif-
ferent views and images. The use of machine 
learning algorithms, particularly Support Vector 
Machines (SVMs) and Random Forests, became 
prevalent for image classification tasks. These 
algorithms, combined with large-scale datasets 
like ImageNet, significantly improved image 
classification accuracy [Viola and Jones, 2001; 
Lowe, 2004; Bay et al., 2008].

In 2012, the AlexNet convolutional neural 
network designed by Alex Krizhevsky won the 
ImageNet image recognition competition. This 
event generated a lot of interest and started a rev-
olution in deep network learning. Since then, with 
the development of technology and greater access 
to information, the accuracy of object detection 
models has doubled and is still being improved 
[Redmon et al., 2016; Krizhevsky et al., 2017; 
Ren et al., 2017].

Computer vision is currently one of the fastest 
growing fields of machine learning and artificial 
intelligence. One of the main challenges of com-
puter vision is to recreate the powerful abilities of 
the human visual system which consists not only in 
detecting and identifying objects in an image, but 
also in describing and understanding the scene en-
closed in it. Automated image analysis algorithms 
are showing promising results in face recognition 
tasks and driving autonomous cars as well as ag-
riculture, industry, sales, finance and healthcare 
[Stawarczyk and Stawarczyk, 2015; Wang and 
He, 2023]. Constant work on improving computer 
vision means that in the future this technology can 
perform an even wider range of functions and, in 
combination with artificial intelligence systems, 
create machines with human-like thinking and an-
alyzing skills [Liu et al., 2018; Wang et al., 2020].

The convolutional neural network method 
was used to classify and locate the objects in digi-
tal images of microscopic samples of activated 
sludge. Automatic analysis can be used in the 
future to assess the condition of activated sludge 
and to determine the rate of changes in the popu-
lation of organisms, just as it has already been 
applied in the case of flock structure parameters 
[Amaral et al., 2013; Babko et al., 2014]. Bioin-
dicators in activated sludge range from several 
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dozen to several hundred species of protozoa and 
metazoa, not including prokaryotes. The situation 
in the biofilm of technical beds may be even more 
complicated. Many of the species mentioned are 
more difficult to identify than Arcella vulgaris 
discussed in the work. The proposed algorithm is 
suitable for identifying other popular bioindicators 
of activated sludge, which was initially success-
fully tested by the authors of the study. However, 
in the case of supervised machine learning meth-
ods, the challenge is not only the appropriate algo-
rithm for identifying objects, but often a qualified 
teacher to supervise the algorithm which must 
correctly identify thousands of visually very simi-
lar representatives of different species.

MATERIALS AND METHODS

The biological material used for the research 
was taken from the Hajdów municipal wastewa-
ter treatment plant in Lublin. This facility is one 
of the systems of mechanical and biological treat-
ment plants that treat municipal sewage [Jaromin-
Gleń et al., 2013].

The material for the tests (activated sludge) 
was collected twice a month for about one year 
period. The sampling was always done in the 
same way. Using a measuring vessel, 300 ml plas-
tic containers were filled with activated sludge, up 
to a maximum of 150 ml per container. Half of the 
volume was left empty to provide an air supply 
during transport. The containers with the material 
prepared in this way were placed in a refrigerator 
at a temperature of 5 °C and then transported to 
the laboratory. The sampling and transport took 
no more than an hour, while the preparations for 

microscopic examination were conducted imme-
diately after the samples were delivered. At least 
three in-vivo slices were prepared from each acti-
vated sludge sample. Using an automatic pipette 
(BIOHIT m 1000), the samples were applied to 
a primary glass which was covered with a cov-
er glass. The specimens were observed with an 
Olympus CX41 optical microscope in transmitted 
light, in a bright field of view, using a ×10 objec-
tive and trinocular with a digital camera and no 
additional optical magnification.

For the purposes of research and analysis, the 
testate amoebas of the species Arcella vulgaris 
were selected (Figures 1-2).

The Arcella vulgaris shell is round, with a di-
ameter of 50–150 μm and a height of 35–55 μm, 
and resembles a watch glass. The lower part of 
the shell is flat with a circular hole with a diam-
eter of 20–30 μm in the middle, which is clear 
in Figure 1a. The hole is surrounded by a flange 
which is a continuation of the shell wall. The wall 
of the Arcella vulgaris shell consists of a mono-
layer of protein, mainly keratin, vesicles. It turns 
brown over time, but the level of its plasma fill-
ing is quite often incomplete in the shell, so vis-
ible empty space between plasma and shell inner 
boundary are formed. There are two nuclei, op-
posite each other. Pulsating vacuoles are usually 
numerous [Ogden and Hedley, 1980; Fiałkowska 
et al., 2005; Pérez-Uz et al., 2010].

For the discussed task, deep convolutional 
neural networks were used – YOLOv4 and YO-
LOv8. Figure 3 and Figure 4 present the archi-
tectures of YOLOv4 and YOLOv8, respectively. 
In YOLO (You Only Look Once) architectures, 
the terms “head,” “backbone,” and “neck” refer 
to different components of the network that play 

Figure 1. (a) Lower part of the shell with a round hole, (b) Three Arcellas

a) b)
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specific roles in the object detection process. The 
backbone network is responsible for extracting 
high-level features from the input image. It typi-
cally consists of multiple convolutional layers ar-
ranged in a deep neural network architecture. The 
backbone network learns to capture and repre-
sent various levels of visual information, starting 
from low-level features like edges and textures to 
higher-level semantic features. In YOLO archi-
tectures, the backbone network acts as the foun-
dation for feature extraction. The neck network 
is an intermediate component that connects the 
backbone and head networks. Its main purpose is 
to enhance feature representation by aggregating 
features from multiple scales. The neck network 
helps capture multi-scale information, which is 
crucial for detecting objects of different sizes. 
It typically includes bottom-up and top-down 
pathways, lateral connections, and feature fusion 
modules. The neck network in YOLO architec-
tures, such as PANet (Path Aggregation Net-
work), aids in improving the accuracy of object 
detection by incorporating multi-scale features. 
The head network is responsible for generating 

the final predictions for object detection, includ-
ing bounding box coordinates, class probabilities, 
and objectness scores. It takes the features ex-
tracted by the backbone network and refined by 
the neck network and processes them to produce 
detection results. The head network typically 
consists of multiple detection layers, each re-
sponsible for detecting objects at different scales. 
These detection layers use anchor boxes, which 
are predefined boxes of various sizes and aspect 
ratios, to localize and classify objects within the 
image. The head network in YOLO architectures, 
such as YOLOv3, combines the features from 
different scales to make accurate predictions for 
object detection [Song et al., 2023]. Overall, the 
backbone, neck, and head components in YOLO 
architectures work together to extract features, 
enhance representation, and generate predictions 
for object detection tasks.

YOLO is a popular real-time object detec-
tion algorithm. It revolutionized the field of 
computer vision by introducing a single-stage 
detection approach where object detection is 
performed in a single pass through the network. 

Figure 2. (a) Two Arcellas sideways, (b) broken shell

a) b)

Figure 3. YOLOv4 network architecture (image source: own work)
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Unlike traditional object detection methods like 
R-CNN, Fast R-CNN and Faster R-CNN [Lowe, 
2004] that require multiple stages, YOLO per-
forms object detection in a single step. It divides 
an input image into a grid and predicts bound-
ing boxes and class probabilities for each grid 
cell. For each grid cell, YOLO predicts multiple 
bounding boxes that enclose objects in that cell. 
These bounding boxes consist of coordinates  
for the box’s center, width (), height (), and con-
fidence scores. Alongside the bounding boxes, 
YOLO predicts class probabilities for each de-
tected object within each grid cell. These are the 
classes defined in the process of preparing data 
for learning. It assigns a probability to each pre-
defined class label based on the objects present 
in the cell. YOLO assigns a confidence score to 
each predicted bounding box, reflecting model’s 
confidence in the box with an object. A threshold 
(a constant used to filter out detections with con-
fidence scores below a certain threshold value) 
is applied to filter out low-confidence detections. 
To eliminate redundant and overlapping detec-
tions, YOLO applies non-maximum suppres-
sion. It selects the most confident detection in 
each grid cell and removes duplicate detections 
based on their overlap using intersection-over-
union (IoU) calculations. After non-maximum 
suppression, YOLO outputs the final set of 
bounding boxes and their associated class labels, 

providing a comprehensive detection result for 
the input image [Lecun et al., 1998; Lin et al., 
2014; Ren et al., 2017; Titano et al., 2018].

YOLO is known for its impressive speed, en-
abling real-time object detection on various plat-
forms, including embedded systems and drones. 
It achieves this by optimizing the network archi-
tecture and using techniques like anchor boxes. 
YOLO has evolved over time into different ver-
sions such as YOLOv1, YOLOv2 (also known 
as YOLO9000), YOLOv3, YOLOv4 up to YO-
LOv8. Each version introduces improvements in 
terms of accuracy, speed, and architectural en-
hancements [Redmon et al., 2016; Redmon and 
Farhadi, 2018].

YOLO is trained using labeled datasets where 
bounding box coordinates and class labels are 
provided for each object. The training process 
involves optimizing the network’s parameters 
using techniques like backpropagation and gra-
dient descent to minimize detection loss. YOLO 
has a wide range of applications, including ob-
ject detection in images and videos, surveil-
lance systems, autonomous vehicles, robotics, 
and more. Its real-time capabilities make it suit-
able for scenarios that require fast and accurate 
object detection. It has gained popularity partly 
due to its open-source implementation, allowing 
researchers and developers to access and modify 
the code. This has led to further advancements 

Figure 4. YOLOv8 network architecture (image source: own work)
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and adaptations of the YOLO algorithm. This al-
lowed the authors to adapt (re-train) the model to 
recognize completely new objects such as Arcella 
vulgaris [Liu et al., 2016; Redmon et al., 2016; 
Redmon and Farhadi, 2018].

YOLOv4 is a significant advancement in the 
YOLO series of object detection models [Boch-
kovskiy et al., 2020]and theoretical justification of 
the result, is required. Some features operate on 
certain models exclusively and for certain prob-
lems exclusively, or only for small-scale datasets; 
while some features, such as batch-normalization 
and residual-connections, are applicable to the 
majority of models, tasks, and datasets. We as-
sume that such universal features include Weight-
ed-Residual-Connections (WRC. It introduces 
various improvements over previous versions, in-
cluding YOLOv3. YOLOv4 incorporates a modi-
fied CSPDarknet53 backbone architecture which 
enhances feature extraction capabilities. It also in-
troduces the PANet (Path Aggregation Network) 
module for multi-scale feature fusion, enabling 
a better detection of objects at different scales. 
YOLOv4 utilizes training techniques like mosaic 
data augmentation, CIOU (Complete Intersection 
over Union) loss function, and a cosine annealing 
scheduler to improve model training and detection 
performance. With its focus on accuracy, speed, 
and efficiency, YOLOv4 has achieved state-of-
the-art performance in object detection tasks. An-
other evolution of YOLOv3 was YOLOv5 which 
was the first model in “YOLO family” to not be 
released with an accompanying paper. Glenn Jo-
cher, the founder of Ultralytics, had been main-
taining a version of YOLOv3 implemented in Py-
Torch, but as he continued to make improvements 
in the architecture itself, he ultimately decided to 
release a new repo branded as YOLOv5 [Liu et al., 
2016; Redmon, 2023].

YOLOv8, developed by Ultralytics, is a mod-
el that builds upon the influential YOLOv5 and 
introduces various architectural and developer 
experience improvements. It follows an anchor-
free approach so directly predicts the center of an 
object instead of the offset from a predefined an-
chor box. YOLOv8 offers developer-convenience 
features such as an easy-to-use command-line in-
terface (CLI) and a well-structured Python pack-
age. These enhancements aim to provide a more 
user-friendly and efficient experience for devel-
opers utilizing the YOLOv8 model.

In the process of preparing material for train-
ing, the photos with the YOLO models were 

labeled in accordance with the format accept-
able by the network [Dutta and Zisserman, 2019]. 
In the pictures with Arcella, rectangular frames 
were drawn manually to surround all of the oc-
curring organisms. The frames were created in 
such a way that the inner edge gently adhered to 
the edge of the Arcella vulgaris wall. All visible 
organisms were labeled, alive or dead, or even an 
empty or broken shell. The images data set con-
sisted of 990 images that were divided into train 
(70%), validation (20%) and test data set (10%). 
Accuracy, precision and recall were calculated for 
the model evaluation. The formulas for the met-
rics are as follows:
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where: TP – the true positive cases, TN – the true 
negative ones, FP – the false positive cases, 
FN – the false negative ones. 

The model training and the prediction were 
performed with the Python programming lan-
guage, version 3.9.13. The package ultralytics 
was used.

RESULTS

Figures 5, 6 present the selected YOLO net-
work predictions. The model detects Arcella vul-
garis on the image, predicts the bounding boxes 
and labels them with certain probability (numbers 
attached to bounding boxes).

Table 1 compares the YOLO models perfor-
mance in the Arcella vulgaris detection problem. 
One can observe that YOLOv8 delivered a sig-
nificant performance improvement. YOLOv4, 
trained for 1500 epochs, achieved worse results 
that YOLOv8 trained on 100 epochs. The preci-
sion metric for YOLOv4 equals 0.9412, while for 
the newer YOLO version it is 0.9515. The same 
can be said about recall – 0.9412 for YOLOv4, 
0.9515 for YOLOv8. It is worth noting that while 
accuracy is almost at the same level and recall 
still improved – from 0.8889 to 0.9074. In addi-
tion, in both cases precision and recall measures 
exceed the value of 0.9, which suggests a very 
good quality of network classification.
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Figure 5. (a) One Arcella vulgaris detected, (b) two Arcella vulgaris detected

a) b)

Figure 6. (a) One Arcella vulgaris detected, (b) three Arcella vulgaris detected

a) b)

Figure 7. Confusion matrix for the YOLOv4 algorithm
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All labels generated by the network show a high 
level of certainty, in most cases above 90%. The 
level of certainty is described by confidence score 
we refer to in the text. Incorrect detection was 
made by the YOLOv4 artificial network for 12 
organisms, i.e. 6 of them marked Arcella vulgaris 
were not present in the photo and the remaining 
6 were missing (Figure 7). Incorrect detection in 
the YOLOv8 prediction was done for 10 organ-
isms, namely 5 of them labeled Arcella vulgaris 
were not present in the photo and the other 5 were 
missing (Figure 8).

CONCLUSIONS

The main purpose of the work was to pres-
ent results of microscopic studies of activated 
sludge supported by automatic image analysis 
together with performance comparison of the 
YOLOv4 and the YOLOv8 deep learning net-
works based on task of identifying and clas-
sifying a selected group of testate amoebae. 
Digital images of the samples of the biological 
material with Arcella vulgaris collected at the 
Hajdów municipal wastewater treatment plant 
in Lublin were analyzed. The architecture of 

the networks built for the detection task was 
general, which means that the structure of the 
layers and filters was not affected in any way by 
the purpose of using the models.

Therefore, given the universal construction 
of the models, the results of the accuracy and 
quality of the classification can be considered 
as very good. This means that the general ar-
chitecture of the YOLO networks can also be 
used for specific tasks such as identification of 
shell amoebas. However, YOLOv8 delivered 
a significant performance improvement – with 
fewer epochs, it provided better object detec-
tion quality than the older version of YOLO, 
namely YOLOv4.

The model identifying the species Arcella 
vulgaris in images of polluted water can be ex-
tended to classify more species of eukaryotic 
organisms. The model improved in this way 
could be used in the future in automatic stud-
ies into the condition of activated sludge and 
attempts to determine the rate of changes in 
the population of organisms. It could also be 
used in an automatic assessment of the stability 
of a wastewater treatment plant based on the 
number of analyzed individuals in each stage of 
wastewater treatment and in treated wastewater.

Table 1. Comparison of object detection quality measures on the test set
Model Epochs Training time [h] Precision Recall Accuracy

YOLOv4 1500 20.85 0.9412 0.9412 0.8889

YOLOv8 100 10.40 0.9515 0.9515 0.9074

Figure 8. Confusion matrix for the YOLOv8 algorithm
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